
PacketFence Developer’s Guide
for version 4.3.0

PacketFence Developer’s Guide
by Inverse Inc.

Version 4.3.0 - Jun 2014
Copyright © 2008-2013 Inverse inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or
any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled "GNU Free Documentation License".

The fonts used in this guide are licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

Copyright © Barry Schwartz, http://www.crudfactory.com, with Reserved Font Name: "Sorts Mill Goudy".

Copyright © Raph Levien, http://levien.com/, with Reserved Font Name: "Inconsolata".

http://scripts.sil.org/OFL
http://www.crudfactory.com
http://levien.com/

Copyright © 2008-2013 Inverse inc. iii

Table of Contents
About this Guide ... 1

Other sources of information ... 1
Documentation ... 2
Code conventions ... 3

Code style ... 3
Customizing PacketFence ... 5

Captive Portal .. 5
Adding custom fields to the database .. 6
VLAN assignment .. 7

SNMP .. 9
Introduction ... 9
Obtaining switch and port information ... 9

Supporting new network hardware ... 11
Switch ... 11
Wireless Access-Points or Controllers .. 15
The "adding a new network device module in PacketFence" checklist 16

Developer recipes .. 17
Running development version ... 17
Debugging PacketFence grammar ... 17
New Exception handling techniques under testing .. 18

Contributing ... 19
Creating patches ... 19
Translations .. 20

Additional Information ... 21
Commercial Support and Contact Information ... 22
GNU Free Documentation License ... 23

Chapter 1

Copyright © 2008-2013 Inverse inc. About this Guide 1

About this Guide

This guide will help you modifying PacketFence to your particular needs. It also contains information on
how to add support for new switches.

The latest version of this guide is available at http://www.packetfence.org/documentation/.

Other sources of information

Network Devices Configuration Guide Covers switch, controllers and access points
configuration.

Administration Guide Covers PacketFence installation,
configuration and administration.

NEWS Covers noteworthy features, improvements
and bugfixes by release.

UPGRADE Covers compatibility related changes, manual
instructions and general notes about
upgrading.

ChangeLog Covers all changes to the source code.

These files are included in the package and release tarballs.

http://www.packetfence.org/documentation/

Chapter 2

Copyright © 2008-2013 Inverse inc. Documentation 2

Documentation

The in-depth or more technical documentation is always as close to the code as possible. Always look at
the POD doc 1. To do so, the prefered way is using the perldoc command as follows:

perldoc conf/authentication/ldap.pm

1Perl’s Plain Old Documentation: http://perldoc.perl.org/perlpod.html

http://perldoc.perl.org/perlpod.html

Chapter 3

Copyright © 2008-2013 Inverse inc. Code conventions 3

Code conventions

Code style

Caution

Work in progress.

We are slowly migrating away from an automated perltidy code style. The reason we are not doing
another pass of tidy is that it messes up code history and makes maintainer’s job more complicated
than it should be. Every new change uses the new guidelines so over time the old code style will slowly
disappear.

∏ Lines of 120 character width maximum (lower encouraged)

∏ No tab characters

∏ Stay consistent with surrounding white spaces

∏ Document each subroutine in POD format (perldoc perlpod)

∏ Use constants instead of hardcoded strings or numbers (use constant or Readonly modules)

∏ in object-oriented modules we use CamelCase 1 notation (ex: $radiusRequest-

>getVoIpAttributes();)

∏ in procedural modules we use perl’s usual notation (ex: $node_info{'pid'} =

$current_request{'pid'};)

∏ regular expressions should be documented (with the /x modifier)

if ($phone_number =~ /
 ^\(?([2-9]\d{2})\)? # captures first 3 digits allows parens
 (?:-|.|\s)? # separator -, ., space or nothing
 (\d{3}) # captures 3 digits
 (?:-|.|\s)? # separator -, ., space or nothing
 (\d{4})$ # captures last 4 digits
 /x) {
 return "$1$2$3";
}

∏ SQL should be capitalized, properly indented and always use named fields (no *)

Chapter 3

Copyright © 2008-2013 Inverse inc. Code conventions 4

$node_statements->{'node_add_sql'} = get_db_handle()->prepare(<<'SQL');
 INSERT INTO node (
 mac, pid, category_id, status, voip, bypass_vlan,
 detect_date, regdate, unregdate, lastskip,
 user_agent, computername, dhcp_fingerprint,
 last_arp, last_dhcp,
 notes,
) VALUES (
 ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?
)
SQL

Chapter 4

Copyright © 2008-2013 Inverse inc. Customizing PacketFence 5

Customizing PacketFence

Captive Portal

Presentation
XHTML Templates
Captive portal content use Template Toolkit templates. All the template files are located in /usr/local/
pf/html/captive-portal/templates. You can freely edit the HTML code in these files. However, if you
want to customize the pages beyond the HTML template (for example by adding new variables to it),
you’ll need to look into the /usr/local/pf/lib/pf/web/custom.pm Perl module. This module allows
you to overload the behavior of the default /usr/local/pf/lib/pf/web.pm module.

Each template relies on header.html and footer.html for the common top and bottom portion of
each file.

CSS
Most of the branding should be possible by only changing the CSS. Here are the various CSS files used
by PacketFence:

Usual one /usr/local/pf/html/captive-portal/content/styles.css

Mobile /usr/local/pf/html/captive-portal/content/responsive.css

Print /usr/local/pf/html/captive-portal/content/print.css

Workflow
When a HTTP request is received by the Apache web server, the following workflow happens:

1. URL is compared against the redirection instructions in /usr/local/pf/conf/httpd.conf.d/
captive-portal-cleanurls.conf

2. Requested CGI script in /usr/local/pf/html/captive-portal/ is executed

3. CGI script calls a generate_<type> which is defined in /usr/local/pf/lib/pf/web.pm

4. The generate_<type> function populate the proper template in /usr/local/pf/html/captive-
portal/templates in order to render the page

http://template-toolkit.org/

Chapter 4

Copyright © 2008-2013 Inverse inc. Customizing PacketFence 6

Remediation Pages
The remediation page shown to the user during isolation are specified through the URL parameter of
the given violation in /usr/local/pf/conf/violations.conf. In its default configuration, PacketFence
uses Template Toolkit to render text provided in the directory /usr/local/pf/html/captive-portal/
templates/violations and obeys to everything mentionned in the Presentation section.

Translations

The language of the user registration pages is selected through the general.locale configuration
parameter. Translatable strings are handled differently for the Remediation pages and the rest of the
captive portal:

∏ Remediation pages

Strings defined in the violation pages (in /usr/local/pf/html/captive-portal/templates/
violations) will be looked up in the translation files in /usr/local/pf/conf/locale/.. and if a
translation is available the translated string will be the one visible on the captive portal.

Also, if you create a violation template with the name of your locale in /usr/local/pf/html/captive-
portal/templates/violations in the format: <template_name>.<locale_name>.html. It will be
loaded instead of the default <template_name>.html and so you can put strings and HTML directly
in your target language without the hassle of escaping everything properly as you would need to do
with gettext.

For example, if malware.es_ES.html exists and you are using the es_ES (Spanish) locale then it will
be loaded instead of malware.html on a violation set to load the malware template.

∏ Rest of the captive portal

In the templates, if a string is in a i18n() call it will be translated. Also pf::web takes care of
performing some of the other translations.

Adding custom fields to the database

You can, if needed, add additional fields to the PacketFence database. Keep in mind though that this
might lead to more work when you upgrade to the next PacketFence version. Depending on the degree
of integration of these fields with PacketFence, you’ll have to execute one or more of the following steps

Adding a field to the database only
In this case, the field is part of one of the main PacketFence tables, but PacketFence is unaware of it.
PacketFence won’t consult the field and won’t be able to modify it. A possible usage scenario would be
a 3rd party application which maintains this field.

Since PacketFence doesn’t have to know about the field, all you have to do is execute your SQL ALTER
TABLE query and you are done.

Chapter 4

Copyright © 2008-2013 Inverse inc. Customizing PacketFence 7

Adding a field and giving PacketFence read-only access
In this case, PacketFence can show the contents of the table using both pfcmd but won’t be able to
modify the contents of the field.

Start by modifying the database table using an SQL ALTER TABLE query.

Then, modify the Perl module having the same name as the table you have added the field to, i.e. If you
added the field to the node table, then edit /usr/local/pf/lib/pf/node.pm. You’ll have to modify the
SQL SELECT queries at the beginning of the file to include your new field and, possibly the functions
using these queries. If your new field should be used in reports, the dashboard or graphs, you’ll also have
to modify the queries in /usr/local/pf/lib/pf/pfcmd/graph.pm, /usr/local/pf/lib/pf/pfcmd/
report.pm and /usr/local/pf/lib/pf/pfcmd/dashboard.pm.

Adding a field and giving PacketFence read-write access
Start by creating the read-only field as described above.

Then, modify the ‘SQL UPDATE` and INSERT queries in the database tables’ Perl module, as well as the
associated functions.

The last step is to make PacketFence’s grammar aware of the new field. Modify /usr/local/pf/lib/pf/
pfcmd/pfcmd.pm and then re-generate the precompiled grammar (which is used by the pfcmd CLI) with:

cd /usr/local/pf
/usr/bin/perl -w -e '
 use strict; use warnings;
 use Parse::RecDescent; use lib "/usr/local/pf/lib";
 use pf::pfcmd::pfcmd;
 Parse::RecDescent->Precompile($grammar, "pfcmd_pregrammar");
'
mv pfcmd_pregrammar.pm /usr/local/pf/lib/pf/pfcmd/pfcmd_pregrammar.pm

VLAN assignment

pfsetvlan uses the getNormalVlan function defined in pf::vlan::custom to determine a node’s VLAN.
Here’s the default function:

Chapter 4

Copyright © 2008-2013 Inverse inc. Customizing PacketFence 8

sub getNormalVlan {
 #$switch is the switch object (pf::Switch)
 #$ifIndex is the ifIndex of the computer connected to
 #$mac is the mac connected
 #$node_info is the node info hashref (result of pf::node's node_view on $mac)
 #$conn_type is set to the connnection type expressed as the constant in
 pf::config
 #$user_name is set to the RADIUS User-Name attribute (802.1X Username or MAC
 address under MAC Authentication)
 #$ssid is the name of the SSID (Be careful: will be empty string if radius
 non-wireless and undef if not radius)
 my ($this, $switch, $ifIndex, $mac, $node_info, $connection_type, $user_name,
 $ssid) = @_;

 my $logger = Log::Log4perl->get_logger();

 return $switch->getVlanByName('normalVlan');
}

As you can see, the function receives several parameters (such as the switch and full node details) which
allow you to return the VLAN in a way that matches exactly your needs!

Chapter 5

Copyright © 2008-2013 Inverse inc. SNMP 9

SNMP

Introduction

Good places to start reading about SNMP are http://en.wikipedia.org/wiki/SNMP and http://www.net-
snmp.org/.

When working with SNMP, you’ll sooner or later (in fact more sooner than later) be confronted with having
to translate between OIDs and variable names. When the OIDs are part of the Cisco MIBs, you can use
the following tool to do the translation: http://tools.cisco.com/Support/SNMP/public.jsp. Otherwise, you’ll
have to use snmptranslate for example and setup your own collection of MIBs, provided (hopefully)
by the manufacturer of your network equipment.

Obtaining switch and port information

Below are some example of how to obtain simple switch and port information using SNMP. We’ll assume
that your switch understands SNMP v2, has the read community public defined and is reachable at
192.168.1.10.

Switch Type

snmpwalk -v 2c -c public 192.168.1.10 sysDescr

Switchport indexes and descriptions

snmpwalk -v 2c -c public 192.168.1.10 ifDescr

Switchport types

snmpwalk -v 2c -c public 192.168.1.10 ifType

http://en.wikipedia.org/wiki/SNMP
http://www.net-snmp.org/
http://www.net-snmp.org/
http://tools.cisco.com/Support/SNMP/public.jsp

Chapter 5

Copyright © 2008-2013 Inverse inc. SNMP 10

Switchport status

snmpwalk -v 2c -c public 192.168.1.10 ifAdminStatus
snmpwalk -v 2c -c public 192.168.1.10 ifOperStatus

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 11

Supporting new network hardware

PacketFence is designed to ease the addition of support for new network hardware referred to as Network
Devices. All supported network devices are represented through Perl objects with an extensive use of
inheritance. Adding support for a new product comes down to extending the pf::Switch class (in /
usr/local/pf/lib/pf).

The starting point to adding support for a new network device should be the vendor’s documentation!
First of all, you’ll have to figure out the exact capabilities of the switch and how these capabilities will
fit into PacketFence. Is it a Switch, an Access-Point or a Wireless Controller?

Switch

Will you be able to use only link change traps? Does your switch allow you to use MAC notification traps?
Port Security? MAC Authentication? 802.1X?

Link change capabilities
You need to define a new class which inherits from pf::Switch and defines at least the following
functions:

∏ getMacAddrVlan

∏ getVersion

∏ getVlan

∏ getVlans

∏ isDefinedVlan

∏ parseTrap

∏ _getMacAtIfIndex

∏ _setVlan

The ‘parseTrap` function will need to return an hash with keys trapType and trapIfIndex. The
associated values must be up or down for trapType and the traps’ ifIndex for trapIfIndex. See a
similar switch’s implementation for inspiration. Usually recent modules are better coded than older ones.

MAC notification capabilities
In addition to the functions mentioned for link change, you need to define the following function:

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 12

∏ isLearntTrapsEnabled

Also, your parseTrap function will need to return trapOperation, trapVlan and trapMac keys in
addition to trapType equals mac. See a similar switch’s implementation for inspiration. Usually recent
modules are better coded than older ones.

Port security capabilities
In addition to the functions mentioned for link change, you need to define the following functions:

∏ isPortSecurityEnabled
∏ authorizeMAC

In this case, the parseTrap function needs to return secureMacAddrViolation for the trapType key.
See a similar switch’s implementation for inspiration. Usually recent modules are better coded than older
ones.

MAC Authentication

Note

Work in progress

NAS-Port translation
Often the ifIndex provided by the switch in a RADIUS Access-Request is not the same as it’s real world
physical equivalent. For example in Cisco requests are in the 50xxx while physical ifIndex are 10xxx. In
order for PacketFence to properly shut the port or request re-authentication a translation between the
two is required. To do so provide an implementation of the following interface:

∏ NasPortToIfIndex

MAC Authentication re-evaluation
MAC Authentication re-evaluation is necessary in order to provoke a VLAN change in the PacketFence
system. This happens for instance when a node is isolated based on an IDS event or when the user
succesfully authenticates through the captive portal. The default implementation in pf::Switch will
bounce the port if there is no Voice over IP (VoIP) devices connected to the port. Otherwise it will do
nothing and send an email. If your device has specific needs (for example it doesn’t support RADIUS
Dynamic VLAN Assignments) override:

∏ handleReAssignVlanTrapForWiredMacAuth

Please note that the default implementation works 99% of the time. If you are unsure whether to override,
it means you don’t need to override.

Once the MAC Authentication works, add the Wired MAC Auth capability to the switch’s code with:

sub supportsWiredMacAuth { return $TRUE; }

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 13

802.1X

Note

Work in progress

NAS-Port translation
Often the ifIndex provided by the switch in a RADIUS Access-Request is not the same as it’s real world
physical equivalent. For example in Cisco requests are in the 50xxx while physical ifIndex are 10xxx. In
order for PacketFence to properly shut the port or request re-authentication a translation between the
two is required. To do so provide an implementation of the following interface:

∏ NasPortToIfIndex

So far the implementation has been the same for MAC Authentication and 802.1X.

Force 802.1X re-authentication
802.1X re-authentication is necessary in order to provoke a VLAN change in the PacketFence system.
This happens for instance when a node is isolated based on an IDS event or when the user succesfully
authenticates through the captive portal. The default implementation in pf::Switch uses SNMP and
the standard IEEE8021-PAE-MIB and is generally well supported. If the default implementation to force
802.1X re-authentication doesn’t work override:

∏ dot1xPortReauthenticate

Proper 802.1X implementations will perform re-authentication while still allowing traffic to go through for
supplicants under re-evaluation.

Once the 802.1X works, add the Wired Dot1X capability to the switch’s code with:

sub supportsWiredDot1x { return $TRUE; }

RADIUS Dynamic Authorization (RFC3576)

Note

RADIUS Dynamic Authorization implementation is not recommended on the wired side
at this point.

RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or RADIUS Disconnect
Messages is supported by PacketFence starting with version 3.1.

On wired network devices CoA can be used to change the security posture of a MAC and perform other
functions like bounce a port. So far we only encountered support for CoA on the wired side on the Cisco
hardware. For an implementation example check _radiusBounceMac in pf::Switch::Cisco.

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 14

Floating Network Devices Support
Floating Network Devices are described in the Administration Guide under "Floating Network Devices" in
the "Optional Components" section. Refer to this documentation if you don’t know what Floating Network
Devices are.

In order to support Floating Network Devices on a switch, you need to implement the following methods:

∏ setPortSecurityEnableByIfIndex($ifIndex, $enable)

∏ isTrunkPort($ifIndex)

∏ setModeTrunk($ifIndex, $enable)

∏ setTaggedVlans($ifIndex, $switch_locker_ref, @vlans)

∏ removeAllTaggedVlans($ifIndex, $switch_locker_ref)

You might need to implement the following:

∏ enablePortConfigAsTrunk($mac, $switch_port, $switch_locker, $taggedVlans)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and
removeAllTaggedVlans(). Override if necessary.

∏ disablePortConfigAsTrunk($switch_port)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and
removeAllTaggedVlans(). Override if necessary.

∏ enablePortSecurityByIfIndex($ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex(). Override
if necessary.

∏ disablePortSecurityByIfIndex($ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex(). Override
if necessary.

∏ enableIfLinkUpDownTraps($ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if
necessary.

∏ disableIfLinkUpDownTraps($ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if
necessary.

Once all the required methods are implemented, enable the capability in the switch’s code with:

sub supportsFloatingDevice { return $TRUE; }

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 15

Wireless Access-Points or Controllers

Minimum hardware requirements
PacketFence’s minimum requirements regarding Wireless hardware is:

∏ definition of several SSID with several VLANs inside every SSID (minimum of 2 VLANs per SSID)
∏ RADIUS authentication (MAC Authentication / 802.1X)
∏ Dynamic VLAN assignment through RADIUS attributes
∏ a means to de-associate or de-authenticate a client through CLI (Telnet or SSH), SNMP, RADIUS Dyn-

Auth 1 or WebServices

Most of these features are available on enterprise grade Access Points (AP) or Controllers. Where the
situation starts to vary wildly is for deauthentication support.

De-authentication techniques
CLI (SSH or Telnet)
An error prone interface and requires preparation for the SSH access or is insecure for Telnet. Not
recommended if you can avoid it.

SNMP
SNMP de-authentication works well when available. However Vendor support is not consistent and the
OID to use are not standard.

RADIUS Dynamic Authorization (RFC3576)
RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or RADIUS Disconnect
Messages is supported by PacketFence starting with version 3.1. When supported it is the preferred
technique to perform de-authentication. It is standard and requires less configuration from the user.

An actual implementation can be found in pf::Switch::Aruba.

Template module
Start with a copy of the template module pf/lib/pf/Switch/WirelessModuleTemplate.pm and fill in
appropriate documentation and code.

Required methods
You need to implement at least:

getVersion() Fetches firmware version

Chapter 6

Copyright © 2008-2013 Inverse inc. Supporting new network hardware 16

parseTrap() Parses the SNMP Traps sent by
the hardware. For wireless hardware
an empty method like the one in
pf::Switch::WirelessModuleTemplate is
ok.

deauthenticateMac() Performs deauthentication

supportsWirelessMacAuth() Return $TRUE if MAC-Authentication is
supported

supportsWirelessDot1x() Return $TRUE if 802.1X (aka WPA-Enterprise)
is supported

Override methods
If default implementation of the following methods doesn’t work you will need to override them:

extractSsid() Extract SSID from RADIUS Request

Special case: bridged versus tunneled modes and
deauthentication
It is important to validate the Access-Point (AP) to Controller relationship when operating in bridged mode
versus when operating in tunneled mode. For example, some hardware will send the RADIUS Access-
Request from the AP when in bridged mode even though it is controlled by a controller. This behavior
impacts deauthentication because it still needs to be performed on the controller. To support this behavior
a switches.conf parameter was introduced: controller_ip.

When adding a new Wireless module try to validate the bridged versus tunneled behavior and modify
deauthenticateMac() to honor controller_ip if required.

The "adding a new network device module in
PacketFence" checklist

Here’s a quick rundown of the several files you need to edit in order to add a new switch into PacketFence.
There’s a plan to reduce this amount of work in progress see issue #1085.

∏ Tested model and firmware version should be documented in module’s POD
∏ Any bugs and limitations should be documented in module’s POD
∏ Add it to pf/html/admin/configuration/switches_add.php and switches_edit.php
∏ Make sure that all tests pass
∏ Add configuration documentation to the Network Devices Guide
∏ Add switch to the Network Devices Guide’s switch chart
∏ Add switch to the chart in README.network-devices

http://packetfence.org/bugs/view.php?id=1085

Chapter 7

Copyright © 2008-2013 Inverse inc. Developer recipes 17

Developer recipes

Running development version

Bleeding edge
For day to day development one can run a checkout of the current development branch in /usr/local/
pf/ and develop there within a working setup.

Care should be taken not to commit local configuration files changes and files not in the repository.

Not so bleeding edge
Using the development yum repository and upgrade packetfence often is a good way to proceed. Check
our snapshots download page for instructions.

Make sure you read the UPGRADE document after every upgrades to avoid any surprises.

Debugging PacketFence grammar

PacketFence uses a parser to validate user input. This parser is referred to as the grammar. When you
see errors like

Command not understood. (pfcmd grammar test failed at line 217.)

it means that you faced a problem in the command you are trying to send or in the grammar itself.

The parsing of a command is a tricky process. First the command is interpreted in the pf::pfcmd
module using traditional regular expressions. Then some of the commands will trigger the
parser pf::pfcmd::pfcmd_pregrammar which is a precompiled module that is generated from
pf::pfcmd::pfcmd when packetfence is built.

To help troubleshoot a failing command, you can enable tracing on the parser by removing the comment
from the following line in pfcmd: #our $RD_TRACE = 1;

http://www.packetfence.org/download/snapshots.html

Chapter 7

Copyright © 2008-2013 Inverse inc. Developer recipes 18

New Exception handling techniques under
testing

Little attention was given to error-handling in PacketFence’s early design. This is understandable as it
wasn’t probably the most bang-for-the-buck thing to do. However we must now live with a large code
base that explodes at runtime or that doesn’t differentiate an erroneous condition from an undefined or
0 value. Refactoring to improve error-handling will be gradual but new code should follow these tips:

1. use Try::Tiny

2. wrap stuff in try {...} catch {...}; (and optionally a finally {...};)

3. in the code use die(...); to throw an exception and make the error message meaningful

4. in the catch block, use $logger->logcarp("explanation: $_") if I want output to the CLI,
otherwise, choose wisely

This catches a lot of errors (including runtime crashers) and allows us to recover from these conditions.

So far, it is mandatory to wrap the Web Services enabled network devices modules' code since SOAP::Lite
will die on you if host is unreachable for example (actually it’s LWP::UserAgent who will).

Chapter 8

Copyright © 2008-2013 Inverse inc. Contributing 19

Contributing

Here are some golden rules of contributing to PacketFence:

∏ Be active on the developer mailing list

The place to be if you want to contribute to the PacketFence project is our developers mailing list: https://
lists.sourceforge.net/lists/listinfo/packetfence-devel. Let us know your issues, what you are working on
and how you want to solve your problems. The more you collaborate the greater the chances that your
work will be incorporated in a timely fashion.

∏ Use the issue tracker: http://www.packetfence.org/bugs/

Good chances that the bug you want to fix or the feature you want to implement is already filed and
that information in the ticket will help you.

∏ Please provide small, focused and manageable patches or pull-requests

If you plan on doing a lot of code, use git and track our current stable branch called stable. Develop
the feature in small chunks and stay in touch with us. This way it’ll be merged quickly in our codebase.
Ideally there would be no big code dumps after finishing a feature.

Creating patches

Note

Since we migrated to git / github, using these tools is recommended over sending
patches by hand.

Patches should be sent in unified diff format. This can be obtained from the diff or git tools.

diff -u oldfile newfile

or from a checkout of the PacketFence source code from git:

git diff

https://lists.sourceforge.net/lists/listinfo/packetfence-devel
https://lists.sourceforge.net/lists/listinfo/packetfence-devel
https://lists.sourceforge.net/lists/listinfo/packetfence-devel
http://www.packetfence.org/bugs/

Chapter 8

Copyright © 2008-2013 Inverse inc. Contributing 20

Translations

The internationalization process uses gettext. If you are new to gettext, please consult http://
www.gnu.org/software/gettext/manual/gettext.html#Overview for a quick introduction.

The PO files are stored in /usr/local/pf/conf/locale. List that directory to see the languages we
currently have translations for.

Online using Transifex
We use the hosted service Transifex to translate PacketFence’s PO files. It offers the possibility to translate
all the strings online as well as providing a command-line tool to push your changes. It’s very convenient.

To use Transifex, you must first sign up for a free account here: https://www.transifex.net/plans/signup/
free/

∏ Once registered, request a new team for your language

∏ Once authorized, you’ll be able to start/continue translating PacketFence in your language

If you need further help about using Transifex, you might want to have a look here.

Using traditional method
If you want to add support for a new language, please follow these steps:

1. create a new language subdirectory in /usr/local/pf/conf/locale
2. change into your newly created directory
3. create a new subdirectory LC_MESSAGES
4. change into your newly created directory
5. copy the file /usr/local/pf/conf/locale/en/LC_MESSAGES/packetfence.po into your directory
6. translate the message strings in packetfence.po
7. create the MO file by executing:

/usr/bin/msgfmt packetfence.po

Submit your new translation to the PacketFence project by contacting us at packetfence-
devel@lists.sourceforge.net.

http://www.gnu.org/software/gettext/manual/gettext.html#Overview
http://www.gnu.org/software/gettext/manual/gettext.html#Overview
https://www.transifex.net/plans/signup/free/
https://www.transifex.net/plans/signup/free/
https://www.transifex.net/projects/p/packetfence/teams
http://help.transifex.com/
mailto:packetfence-devel@lists.sourceforge.net
mailto:packetfence-devel@lists.sourceforge.net

Chapter 9

Copyright © 2008-2013 Inverse inc. Additional Information 21

Additional Information

For more information, please consult the mailing archives or post your questions to it. For details, see:

∏ packetfence-announce@lists.sourceforge.net: Public announcements (new releases, security warnings
etc.) regarding PacketFence

∏ packetfence-devel@lists.sourceforge.net: Discussion of PacketFence development

∏ packetfence-users@lists.sourceforge.net: User and usage discussions

mailto:packetfence-announce@lists.sourceforge.net
mailto:packetfence-devel@lists.sourceforge.net
mailto:packetfence-users@lists.sourceforge.net

Chapter 10

Copyright © 2008-2013 Inverse inc.
Commercial Support

and Contact Information 22

Commercial Support and Contact
Information

For any questions or comments, do not hesitate to contact us by writing an email to: support@inverse.ca.

Inverse (http://inverse.ca) offers professional services around PacketFence to help organizations deploy
the solution, customize, migrate versions or from another system, performance tuning or aligning with
best practices.

Hourly rates or support packages are offered to best suit your needs.

Please visit http://inverse.ca/support.html for details.

mailto:support@inverse.ca
http://inverse.ca
http://inverse.ca/support.html

Chapter 11

Copyright © 2008-2013 Inverse inc. GNU Free Documentation License 23

GNU Free Documentation License

Please refer to http://www.gnu.org/licenses/fdl-1.2.txt for the full license.

http://www.gnu.org/licenses/fdl-1.2.txt

